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Abstract. Mixed integer programming models and computational strategies developed for treatment plan-
ning optimization in brachytherapy are described. The problem involves the designation of optimal place-
ment of radioactive sources (seeds) inside a tumor site. Two MIP models are described. The resulting
MIP instances are difficult to solve, due in large part to dense constraint matrices with large disparities
in the magnitudes of the nonzero entries. A matrix reduction and approximation scheme is presented as
a computational strategy for dealing with the dense matrices. Penalty-based primal heuristic and branch-
ing strategies to assist in the solution process are also described. Numerical results are presented for 20
MIP instances associated with prostate cancer cases. Compared to currently used computer-aided planning
methods, plans derived via the MIP approach use fewer seeds (20–30 fewer) and needles, and provide better
coverage and conformity – measures commonly used to assess the quality of treatment plans. Good treat-
ment plans are returned in 15 CPU minutes, suggesting that incorporation of this MIP-based optimization
module into a real-time comprehensive treatment planning system is feasible.
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1. Introduction

In recent years, technical advances in medical devices have led to a resurgence in the use
of radioactive implants as an alternative or supplement to external beam radiation for
treating a variety of cancers. This treatment modality, known as brachytherapy, involves
the placement of encapsulated radionuclides (“seeds”) either within or near a tumor [5].
In the case of prostate cancer, seed implantation is typically performed with the aid of a
transrectal ultrasound transducer attached to a template consisting of a plastic slab with a
rectangular grid of holes in it. The transducer is inserted into the rectum and the template
rests against the patient’s perineum. A series of transverse images are taken through the
prostate, and the ultrasound unit displays the template grid superimposed on the anatomy
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of the prostate. Needles inserted in the template at appropriate grid positions enable seed
placement in the target at planned locations.

Despite the advances in devices that assist in accurate placement of seeds, deciding
where to place the seeds remains a difficult problem. A treatment plan must be designed
so that it achieves an appropriate radiation dose distribution to the target volume, while
keeping the dose to surrounding normal tissues at a minimum.

Traditionally, to design a treatment plan, several days (or weeks) prior to implanta-
tion the patient undergoes a simulation ultrasound scan. Based on the resulting images,
an iterative process is performed to find a pattern of needle positions and seed coordi-
nates along each needle which will yield an acceptable dose distribution. Adjustments
are typically guided by repeated visual inspection of isodose curves overlaid on the tar-
get contours. Since the process requires manual inspection at each iteration, the process
is not only lengthy – sometimes taking up to 4 hours to complete – but it also means that
only a small fraction of possible configurations can actually be examined. More impor-
tantly, by the time the implantation is performed several days later, the prostate volume
will have changed in both shape and size, making the pre-plan invalid.

In recent years, computer-aided iterative approaches and automated methods
have been developed to aid in brachytherapy treatment planning in the operating
room [4,8,14–16,18]. In this paper, we describe a novel application of mixed integer
programming to brachytherapy treatment planning and its application to the planning of
permanent implants into the prostate. The treatment model, described in section 2, in-
volves using 0/1 indicator variables to capture the placement or nonplacement of seeds in
a prespecified three-dimensional grid of potential locations. In section 3, we analyze the
computational issues and strategies related to the mixed integer programming instances.
The MIP instances proved to be very difficult to solve to optimality. The numerical re-
sults presented in section 4 indicate that “good” solutions can be obtained via the MIP
approach within 5–15 minutes. Section 5 provides some concluding remarks.

2. Mixed integer programming models

Our treatment model involves using 0/1 variables to record placement or nonplacement
of seeds in a prespecified three-dimensional grid of potential locations. In the case of
prostate cancer, the locations correspond to the projection of the holes in the template
onto the region representing the prostate in each of the ultrasound images. If a seed is
placed in a specific location, then it contributes a certain amount of radiation dosage to
each point in the images. Thus, once the grid of potential seed locations is specified,
the total dose level at each point can be modeled. Let xj be a 0/1 indicator variable
for recording placement or non placement of a seed in grid position j . Then the total
radiation dose at point P is given by

∑
j

D
(‖P −Xj‖

)
xj , (1)
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where Xj is a vector corresponding to the coordinates of grid point j , ‖ · ‖ denotes the
Euclidean norm, and D(r) denotes the dose contribution of a seed to a point r units
away. The target lower and upper bounds, LP and UP , for the radiation dose at point P
can be incorporated with (1) to form constraints for the MIP model:∑

j

D
(‖P −Xj‖

)
xj �LP ,

∑
j

D
(‖P −Xj‖

)
xj �UP .

(2)

Of course, not all points P in the images are considered. The images are dis-
cretized at a granularity that is conducive both to modeling the problem accurately and
to enabling computational approaches to be effective in obtaining solutions in a timely
manner. For discretizations that provide accurate modeling, it is typically not possible
to satisfy desired dose constraints at all points simultaneously. This is due in part to the
proximity of diseased tissue to healthy tissue. Also, because of the inverse square factor,
the dose level contribution of a seed to a point less than 0.3 units away, say, is typically
larger than the target upper bound for the point. Hence, the preprocessing techniques
commonly used in integer programming literature cannot be applied directly to these
dose constraints (as this will result in assigning 0 to all seed positions). In this paper,
we will focus on two models which address this difficulty and computational strategies
pertaining to solving the resulting MIP instances.

2.1. Model 1

This model identifies a maximum feasible subsystem in the proposed linear system. By
introducing additional 0/1 variables one can directly maximize the number of points
satisfying the specified bounds. In this case, constraints (2) are replaced by∑

j

D
(‖P −Xj‖

)
xj + NP

(
1 − vLP

)
� LP ,

∑
j

D
(‖P −Xj‖

)
xj −MP

(
1 − vUP

)
� UP ,

(3)

where vLP and vUP are 0/1 variables, and MP and NP are suitably chosen positive con-
stants. If a solution is found such that vLP = 1, then the right hand side of the first
inequality in (3) is zero; and hence, the lower bound for the dose level at point P is not
violated. Similarly, if vUP = 1, the upper bound at point P is not violated. In order to find
a solution that satisfies as many bound constraints as possible, it suffices to maximize the
sum of these additional 0/1 variables; i.e., maximize

∑
P (v

L
P + vUP ). In practice, achiev-

ing the target dose levels for certain points may be more critical than achieving the target
dose levels for certain other points. In this case, one could maximize a weighted sum:∑
P (αP v

L
P + βPv

U
P ), where the more critical points receive a relatively larger weight.

Using a weighted sum was important for the prostate cancer cases to be discussed in
section 3. Since there were significantly fewer urethra and rectum points compared to
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the number of points representing the prostate, to increase the likelihood that the former
points achieved the target dose levels, a large weight was placed on the associated 0/1
variables.

The role of the constants NP and MP in (3) is to ensure that there will be feasible
solutions to the mathematical model. In theory, these constants should be chosen suit-
ably large so that if vLP or vUP is zero, the associated constraint in (3) will not be violated
regardless of how the 0/1 variables xj are assigned. In practice, the choice is driven by
computational considerations of the optimization algorithm being used and/or by deci-
sions by the radiation oncologist. For a branch-and-bound algorithm, it is advantageous
computationally to assign values that are as tight as possible. The medical expert can
guide the selection of the constants by either assigning absolute extremes on accept-
able radiation dose levels delivered to each point (note that UP + MP is the absolute
maximum dose level that will be delivered to point P under the constraints in (3), and
LP − NP is the absolute minimum), or by estimating the number of seeds needed for a
given plan. In the latter case, if the number of seeds needed is estimated to be between
k1 and k2 (k1 � k2), say, then the constant NP can be taken to be LP minus the sum of
the smallest k1 of the values D(‖P −Xj‖), and the constant MP can be taken to be the
sum of the largest k2 such values minus UP . Selection in this fashion will ensure that no
plan having between k1 and k2 seeds will be eliminated from consideration.

2.2. Model 2

An alternative model involves using continuous variables to capture the deviations of the
dose level at a given point from its target bounds and minimizing a weighted sum of the
deviations. In this case, the constraints (2) are replaced by constraints of the form∑

j

D
(‖P −Xj‖

)
xj + yLP �LP ,

∑
j

D
(‖P −Xj‖

)
xj − yUP �UP ,

(4)

where yLP and yUP are nonnegative continuous variables. The objective for this model
takes the form: minimize

∑
P (αP y

L
P+βPyUP ), where αP and βP are nonnegative weights

selected according to the relative importance of satisfying the associated bounds. For
example, weights associated with an upper bound on the radiation dose for points in
a neighboring healthy organ may be given a relatively larger magnitude than weights
associated with an upper bound on the dose level for points in the diseased organ.

2.3. Model variations and other side constraints

Both models allow the incorporation of alternative seed types. There are a variety of
radioactive sources that are used for brachytherapy, including palladium-103, iodine-
125, cesium-137, iridium-192, and gold-198, each of which has its own set of exposure
rate constants. (Pd-103 or I-125 are commonly used for treating prostate cancer.) At
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this time however, a single seed type is used in a given treatment plan. This fact is, in
part, due to the difficulty of designing treatment plans with multiple seed types as well
as identifying multiple seed types in post-dosimetry analysis. The allowance of multiple
seed types can easily be incorporated into the MIP framework – one need only modify
the total dose level expression (1) as∑

j

∑
i

Di
(‖P −Xj‖

)
xij . (5)

Here, xij is the indicator variable for placement or nonplacement of a seed of type i in
grid location j , and Di(r) denotes the dose level contribution of a seed of type i to a
point r units away. In this case, a constraint restricting the number of seeds implanted at
grid point j is also needed:

∑
i xij � 1.

Besides the basic dosimetric constraints, the models also include dose-volume con-
straints to ensure sufficient coverage to the tumor volume. Other physical constraints de-
sired by the clinicians are also incorporated into our MIP models. One could incorporate
constraints to control the percentage of each tissue structure satisfying specified target
bounds. Alternatively, one could – if desired – constrain the total number of seeds and/or
needles used. Note also that one can ensure that target dose bounds at specific points are
satisfied by fixing the associated “feasibility” variables (vLP , v

U
P , y

L
P , y

U
P ) to appropriate

values.

3. Computational strategies

We note that unlike most of the industrial applications in which the MIP instances con-
tain sparsely populated nonzero entries in the constraint matrices, the resulting MIP
instances for treatment optimization have mostly dense matrices. Furthermore, the mag-
nitudes of the coefficients range from the order of tens to tens of thousands. Below we
describe some specialized strategies that have shown to be effective in improving the
tractability of the resulting instances.

3.1. Matrix reduction and approximation scheme

Motivated by the dense constraint matrices and range in the magnitudes in the nonzero
entries, a matrix reduction and perturbation approach was investigated. The reduction
scheme partitions the constraint matrix into two submatrices, based on the magnitude
of the coefficients. The right-hand-side is perturbed to compensate for the change in
the matrix coefficients. Specifically, we are interested in a dense MIP instance of the
following form:

Ax −Ny � L,
Ax +Mz � U,
x ∈ Zn+, y ∈ �p+, z ∈ �q+,

(S)

where A is an m × n nonnegative dense matrix, and N and M are m × p and m × q

nonnegative (sparse) matrices, respectively. Let PS = conv{(x, y, z): Ax − Ny � L,
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Ax +Mz � U , x ∈ Zn+, y ∈ �p+, z ∈ �q+}. For the sake of presentation, we assume
that y and z are continuous variables. However, the method described below works also
when they are restricted to assume integer values.

Definition 3.1. For a chosen δ > 0, split the matrix A as A = A1 + A2, where

a1
ij =

{
aij if aij � δ,
0 otherwise

and a2
ij =

{
aij if aij < δ,
0 otherwise.

Let Ai denote the ith row of matrix A, and let x̄ and x̂ solve the following linear pro-
grams, respectively:

max
{i: A2

i �=0}
max

{
A2
i x: x ∈ PS} and min

{i: A2
i �=0}

min
{
A2
i x: x ∈ PS}.

Consider the following two systems:

(i) The system

A1x − Ny � L− A2x̄,

A1x +Mz � U − A2x̂,

x ∈ Zn+, y ∈ �p+, z ∈ �q+
is called a δ-reduction for (S). It is easy to check that if (x, y, z) is feasible for (S),
then it is feasible for its δ-reduction. The converse does not hold. Clearly, if xj ∈
[αj , βj ], j = 1, . . . , n, we can approximate x̄j and x̂j by βj and αj , respectively.

(ii) Let ε ∈ Zn+. The system

A1x − Ny � L− A2ε,

A1x +Mz � U − A2ε,

x ∈ Zn+, y ∈ �p+, z ∈ �q+
is called a δ-reduction-ε-approximation for (S) if A2x̂ � A2ε � A2x̄.

We caution that applying these schemes to the MIP instances is difficult. In partic-
ular, the selection of δ and ε is empirical and problem dependent, since the coefficients in
each row of the dosimetric constraint matrix vary greatly. In some rows, the coefficients
are distributed in the range from tens to hundreds, whereas in others there are various
coefficients (fewer than 10%) which have magnitudes in the hundreds of thousands and
tens of thousands, and the rest range from tens to thousands. A comprehensive develop-
ment and detailed analysis of the reduction and approximation schemes and their effect
on helping to solve these and other dense MIP instances can be found in [9]. Here we
describe an implementation using the dosimetric constraints for model 1:

n∑
j=1

D
(‖P −Xj‖

)
xj +NP

(
1 − vLP

)
�LP ,
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n∑
j=1

D
(‖P −Xj‖

)
xj −MP

(
1 − vUP

)
�UP .

To select δ, one pass is made through the constraint matrix to evaluate the distrib-
ution of the nonzeros in each row. For row i, we calculate the average of the largest 5%
of the nonzero coefficients, avemax. Initialize K = ∅. The set K will be populated with
the set of indices selected in a nondecreasing manner, starting from the smallest nonzero
coefficient. We continue to place an index into K until ave{D(‖P −Xj‖): j ∈ K} is ap-
proximately equal to γ ∗ avemax, or until the cardinality of the set K exceeds 50% of the
total number of nonzeros in the given row. We then assign δi = max{D(‖P −Xj‖): j ∈
K}, and δ = max{δi}. For a row with coefficients exceeding a magnitude of 10, 000, we
set γ = 0.5%. For all other rows, we increase this value gradually with the amount of
decrease in the magnitude of the coefficients.

Assuming there are m rows for each of the two classes of dosimetric constraints,
the complexity of the search includes O((n + 1) log(n + 1)) operations for sorting the
nonzero coefficients for each row, and O(m(n + 1) log(n + 1)) operations to set up the
δ-reduction system.

3.2. Penalty-based adaptive primal heuristic procedure

The heuristic procedure is an LP-based primal heuristic in which at each iteration, some
binary variables are set to 1 and the corresponding linear program is resolved. The
procedure terminates when the linear program returns an integer feasible solution or
when it is infeasible. In the former case, reduced-cost fixing is performed at the root
node, as well as locally on each of the branch-and-bound nodes.

Again focusing on model 1, let xLP be an optimal solution of some linear program
relaxation at a branch-and-bound node. (For simplicity of notation, the variables vLP and
vUP are included as part of xLP.) At the start of the heuristic procedure, penalties, pj , for
all variables are set to zero. Let U = {j : xLP

j = 1}, and F = {j : 0 < xLP
j < 1}. The

procedure works by first setting xj = 1 for all j ∈ U . For each j ∈ F corresponding to
a grid point j with coordinates Xj , the penalty on xj is updated according to the formula

pj =
∑
k:xLP
k

=1

k a grid point

1

‖Xk −Xj‖ .

For all other j ∈ F (i.e., j corresponding to vLP and vUP ) the penalties remain at value
zero. Let xmax = max{xLP

j : j ∈ F}, and ε > 0. In nondecreasing order of pj ’s, the
variables in F are set to 1 if xLP

j � xmax − ε. Since penalties for fractional vUP and vLP
variables are always set to zero, these variables are always considered first for setting
to 1. For every binary variable that is set to 1, logical implication (probing) [3,13] is
performed to avoid conflicts in variable fixing. The value ε is chosen dynamically at
each iteration so that about 10% of the fractional variables are set to 1, a strategy which
appears to work well empirically for our MIP instances.
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3.3. Penalty branching strategy

Branching variables are selected based on pseudo-costs as well as penalties. Let ε > 0
be given, and let K = {j : ε < xLP

j < 1 − ε}. One can control the size of K by choosing
ε so that |K| reaches a certain percentage with respect to |F |. For each k ∈ K the degra-
dations Uk and Dk in the objective value when branching with xk set to 1 and 0, respec-
tively, are calculated, and the penalties pk are computed in the same manner as described
in the previous section. The branching variable is chosen as that with the maximum
penalty-weighted degradation, which is computed as max{k∈K}{Dk +Uk/(pk + 1)}. The
values Uk and Dk can be calculated exactly by solving the respective linear programs,
or can be approximated by performing only a fixed number of simplex iterations. The
approximation strategy helps to control the required computational effort. We report
results based on performing 50 simplex iterations using the steepest-edge strategy.

4. Numerical results

We present results of our MIP approach using data from twenty prostate cancer cases.
In each case, iodine-125 was used as the radioactive source, and four separate categories
of points, corresponding to distinct anatomical structures, were specified and used for
setting up the MIP instances. Contour points defined the boundary of the diseased organ
in each of the slices; the regions enclosed by each boundary were populated with uni-
formly spaced points, termed uniformity points; and points representing the positions of
the urethra and rectum in each slice were also specified. For the 20 cases considered, the
average numbers of points in each category were: uniformity 1305, contour 461, urethra
28, and rectum 59. The lower and upper dose bounds for each point type were specified
as multiples of the target prescription dose. These are tabulated in table 1.

Numerical tests were performed using two distinct models. Model 1 utilized con-
straints (3) and the associated objective max

∑
(αP v

L
P + βP vUP ); and model 2 utilized

constraints (4) and the objective min
∑
(αP y

L
P + βP yUP ). Various combinations of ob-

jective function weights for each of the two models were tested. One of the goals of the
numerical work involves assessing the effects of using the different models and model
parameters.

For both models, it is advantageous to place relatively large weights on the ob-
jective function variables associated with urethra, rectum, and contour points. For the
results reported herein, the objective function weights for the variables associated with
uniformity points were set equal to 1; those associated with contour points were set equal

Table 1
Lower and upper bound specifications as multiples of target prescription dose.

Rectum Urethra Contour Uniformity

Lower bound 0 0.9 1.0 1.0
Upper bound 0.78 1.1 1.5 1.6
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to the ratio of the number of uniformity points to the number of contour points; and
those associated with urethra and rectum points were set equal to the number of unifor-
mity points. Selecting such large weights for the urethra and rectum points essentially
ensures that the dose contribution to these points will lie within the specified bounds.
The heavy weight for the contour points assists in achieving prescription isodose curves
that conform well with the boundary of the diseased prostate.

Although the problem size is only moderate, even solving the initial linear pro-
gramming relaxation is memory-taxing, often resulting in a process having a total size
of 400 MB (including text, data, and stack), and total resident memory approaching
400 MB. Computational experience with these instances has demonstrated that they are
extremely difficult to solve to optimality, requiring strenuous computational effort to im-
prove the objective value by a marginal amount. Even obtaining good feasible solutions
which are clinically acceptable is difficult. All the numerical tests were performed on a
cluster of 550 MHz Pentium III Xeon PCs running RedHat Linux 7.1.

Table 2 shows the problem statistics for models 1 and 2. Here, Rows and Cols
indicate the number of rows and columns, respectively, in the constraint matrix; and 0/1
vars indicates the number of 0/1 variables.

To illustrate the level of difficulty, in table 3 we provide a solution profile for case
Pt 1 using the MIP solver of CPLEX V7.1 (with pseudo-cost branching, which appears
to be the best among the possible options). We note that none of the instances were

Table 2
Problem statistics.

Model 1 Model 2

Pt Rows Cols 0/1 vars Rows Cols 0/1 vars

1 4398 4568 4568 4398 4568 170
2 4546 4738 4738 4546 4738 192
3 3030 3128 3128 3030 3128 98
4 2774 2921 2921 2774 2921 147
5 5732 5957 5957 5732 5957 225
6 5728 5978 5978 5728 5978 250
7 2538 2658 2658 2538 2658 120
8 3506 3695 3695 3506 3695 189
9 2616 2777 2777 2616 2777 161

10 1680 1758 1758 1680 1758 78
11 5628 5848 5848 5628 5848 220
12 3484 3644 3644 3484 3644 160
13 3700 3833 3833 3700 3833 133
14 4220 4436 4436 4220 4436 216
15 2234 2330 2330 2234 2330 96
16 3823 3949 3949 3823 3949 126
17 4222 4362 4362 4222 4362 140
18 2612 2747 2747 2612 2747 135
19 2400 2484 2484 2400 2484 84
20 2298 2406 2406 2298 2406 108
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Table 3
Solution statistics for Pt 1 running on CPLEX V7.1.

CPU secs Best Best bbnodes
elapsed IP obj. LP obj. searched

Model 1
67.0 – 1888013.3 0

261.70 – 1888013.14 21
1536.15 – 1888013.01 139

10290.29 – 1888011.80 16558
20800.35 – 1888011.01 50676
30535.66 – 1888009.66 90596
41889.83 – 1888009.10 130541
52761.01 – 1888008.02 170577
67060.84 – 1888007.45 222861

Cuts added 13029
Model 2

106.60 1047338492.9 3.5015e+07 61
5008.38 440437196.1 7.3056e+07 2241

10037.33 108100907.2 8.0022e+07 6241
15185.81 93550763.5 8.3096e+07 15001
20357.77 93550763.5 8.4342e+07 25001
32736.21 93550763.5 8.5909e+07 50001
45911.94 93550763.5 8.6919e+07 77321
46884.43 93550763.5 8.6987e+07 79341

solved to optimality using CPLEX V7.1. For model 1 instances, great computational
effort was exerted, only to yield marginal improvement in the objective value. Instances
for model 2 were slightly more manageable, although the objective value improvement
eventually stalled (e.g., after 80,000 nodes for PT 1). The columns CPU secs elapsed,
Best IP obj., Best LP obj., and bbnodes searched record, respectively, the time elapsed
within the solution process, the incumbent objective value corresponding to the best
integer feasible solution, the corresponding best LP value from the remaining branch-
and-bound nodes, and the number of nodes solved. For model 1, we report the solution
process up to 67060.84 CPU seconds and for model 2, the solution process is observed
up to 46884.43 CPU seconds.

The numerical work reported in the remainder of the paper is based on a specialized
branch-and-bound MIP solver which is built on top of a general-purpose mixed integer
research code (MIPSOL) [7], using CPLEX V7.1 as the intermediate LP solver. The
general-purpose code, which incorporates pre-processing, reduced-cost fixing, cut gen-
eration, and fast heuristics, has been quite effective in solving the instances reported in
MIPLIB3 [2]. For the prostate cancer instances reported in this paper, the matrix reduc-
tion and approximation scheme, the penalty-based adaptive primal heuristic procedure,
and penalty branching strategy described in section 3 were implemented to assist in the
solution process.

None of the instances for model 1 were solved to proven-optimality, whereas for
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model 2, all except one were solved to optimality. In tables 4a and 4b the solution
statistics for both models are given. We set the running time limit to be 10,000 CPU
seconds for model 1. In each table, the column labeled Pt denotes the patient case;
the column labeled Initial LP obj. lists the optimal objective value of the initial LP
relaxation; and the columns First heuristic (secs, obj.) list the elapsed time when the
heuristic procedure is first called and the objective value corresponding to the feasible
integer solution returned by the heuristic. For table 4a, the columns Best LP obj. and Best
IP obj. report, respectively, the LP objective bound corresponding to the best node in the
remaining branch-and-bound tree and the incumbent objective value corresponding to
the best integer feasible solution upon termination of the solution process (10,000 CPU
seconds). In table 4b, the columns Optimal IP obj., bb nodes, and Elapsed time report,
respectively, the optimal IP objective value, the total number of branch-and-bound tree
nodes solved, and the total elapsed time for the solution process.

Table 5 compares the running time and number of branch-and-bound nodes solved
for model 2 when matrix reduction was used. The column CPU factor shows the im-
provement in running time for each instance, and the column % Nonzero reduced records
the percentage of nonzero entries in the constraint matrix reduced by the procedure. Us-
ing the reduction approach, the running time for model 2, with the exception of one
instance, decreased by 1.5–92 times for the 19 instances, with an average decrease of
14.6 times. The readers are referred to [9] for more details regarding this approach.

Table 4a
Solution statistics for model 1 (maximization).

Pt Initial First heuristic Best Best

LP obj. secs obj. LP obj. IP obj.

1 1888013.3 376.1 1752286 1873433.93 1766609
2 1809964.8 397.5 1736946 1796642.43 1736946
3 687448.6 33.4 587712 633843.00 593228
4 803564.9 250.9 753672 802134.58 765115
5 2855667.4 1345.9 2638679 2835825.38 2649950
6 2925181.3 1349.2 2805284 2907792.52 2805284
7 651682.5 62.7 582314 639160.50 598630
8 1132430.4 232.3 1062561 1112930.1 1075670
9 677253.3 111.4 639527 669073.94 641643

10 286986.4 25.5 252368 274188.69 257492
11 2585974.0 695.0 2453886 2529795.54 2462279
12 983328.6 97.7 804213 945400.35 817875
13 862373.4 67.2 744450 27676.91 795149
14 1611020.9 507.3 1509329 1590484.06 1531009
15 438667.7 39.9 376087 428376.60 396064
16 1273297.8 274.2 1170743 1248805.82 1204870
17 892239.9 136.4 747929 817014.30 757446
18 683918.1 94.6 581684 666083.02 592861
19 425871.6 16.0 341328 403235.91 376179
20 360474.3 26.4 288973 343623.43 309499



U
N

C
O

R
R

EC
TE

D
  P

R
O

O
F

VTEX(LK) PIPS No:5115482 artty:res (Kluwer BO v.2002/10/03)

a5115482.tex; 13/01/2003; 14:38; p. 12

158 LEE AND ZAIDER

Table 4b
Solution statistics for model 2 (minimization).

Pt Initial First heuristic Optimal bb Elapsed

LP obj. secs obj. IP obj. nodes time

1 29973430.5 21.7 440437196.1 93550763.6 377 9706.0
2 19921521.4 34.7 179171112.9 49156651.9 9184 378857.0
3 −11333869.7 5.2 97625273.7 50517325.3 4051 27724.0
4 2597572.3 18.7 189610043.6 21005621.8 1377 27485.0
5 73684327.8 112.4 467410325.8 93828192.8 1293 748292.3a

6 36902037.2 105.3 524058129.4 64216816.0 5293 1136221.7
7 45848681.6 6.5 302836935.1 118325071.3 712 4655.5
8 17614469.1 32.3 250057575.6 73399636.5 62373 1863362.0
9 14691002.3 17.3 344540093.9 57209440.5 1643 41212.1

10 28197622.0 2.1 90862556.4 55251869.2 883 2619.1
11 172211617.5 20.5 616562230.8 293530404.4 627 13904.1
12 292898229.2 11.5 785823995.0 518235776.6 1985 35718.5
13 −163007095.9 4.3 −21671699.9 −77173221.5 481 2817.6
14 40303495.4 27.1 378940132.7 119586431.2 1408 58654.2
15 89432119.5 5.5 236921860.0 191780731.4 10838 55913.8
16 78434032.7 14.1 244541089.6 148828362.1 1282 25969.0
17 −830974566.8 2.7 −717574515.4 −799657523.1 25 178.2
18 155505947.5 9.6 700452425.7 351076662.5 82118 554737.2
19 73628152.3 2.1 204208781.0 149604823.5 377 1207.8
20 −45968824.5 1.8 57904156.7 15635930.3 415 1222.5

a Not optimal.

Despite the computational difficulty, high-quality clinically desirable treatment
plans were obtained using both models. In table 6 we report some clinically relevant
statistics. For the results reported in the table, the treatment plans are those associated
with the first feasible solution obtained from our specialized solver applied to model 1
and model 2. The cases are categorized according to the target prescription dose (100 Gy,
120 Gy, or 160 Gy). Prostate vol (cc) records the volume of the prostate, Activity (mCi)
is the activity rate of the implanted seeds, and conformity and coverage are measures of
the quality of the generated plans. Conformity is defined as the ratio of the volume of the
prescription isodose surface determined by the plan to the portion of the target volume
within this surface. Coverage measures the ratio of the target volume within the prescrip-
tion isodose surface to the entire target volume. For an ideal plan both the conformity
and coverage indices should be 1. A conformity index greater than 1 provides a measure
of the amount of healthy normal tissue receiving dose at least as high as the prescrip-
tion dose. In particular, a smaller conformity index implies that nearby healthy tissue is
exposed to less radiation, thus reducing the probability of complications. Compared to
currently used computer-aided planning methods, plans derived via the MIP approach
use fewer seeds (20–30 fewer) and needles, and provide better coverage and conformity
indices [4,8,15]. There are only marginal differences in the clinical properties between
the first plans returned by the two MIP models.
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Table 5
Contrasting solution time from matrix reduction technique for model 2 (minimization).

Original Reduced system

Pt No. bb CPU secs No. bb CPU secs CPU % Nonzero
nodes elapsed nodes elapsed factor Reduced

1 377 9706.0 468 6406.4 1.5 34.2
2 9184 378857.0 2190 22285 17 44.3
3 4051 27724.0 2554 4766.5 5.8 39.4
4 1377 27485.0 980 7852.8 3.5 35.9
5 1293 748292.3a 104 10539.3 71 44.6
6 5293 1136221.7 504 12301.6 92.4 52.8
7 712 4655.5 242 802.9 5.8 30.3
8 62373 1863362.0 5460 64638.8 28.8 38.1
9 1643 41212.1 1442 8862.7 4.7 23.5

10 883 2619.1 620 741.7 3.5 12.5
11 627 13904.1 720 6525.8 2.1 48.1
12 1985 35718.5 1607 5011.4 7.2 29.1
13 481 2817.6 242 702.9 4.2 37.2
14 1408 58654.2 611 17585.9 3.3 42.6
15 10838 55913.8 5699 12292.6 4.5 15.0
16 1282 25969.0 3874 13779.3 4.5 32.3
17 25 178.2 56 324.9 0.55 42.6
18 82118 554737.2 31172 102346.2 5.4 25.8
19 377 1207.8 209 162.5 7.5 22.0
20 415 1222.5 390 289.6 4.2 25.0

a Not optimal.

To contrast the effect of weights on the resulting coverage and conformity scores
of plans, we illustrate graphically in figures 1 and 2 the changes in toxicity (for this
presentation, toxicity is defined as conformity −1) to external normal tissue and cov-
erage when various objective function weights are selected for the contour points. In
particular, we highlight three weight combinations for contour points: objective func-
tion weights equal to 1 (C-small); objective function weights eqaul to the ratio of
the number of uniformity points to the number of contour points (C-medium); and
objective function weights equal to the number of unformity points (C-large). De-
tailed analysis using different weights, together with the clinical significance, is given
in [10]. From the graphs, both models illustrate similar trends: larger weights on con-
tour points provide better coverage while at the same time producing slightly higher
toxicity to normal tissue adjacent to the prostate, which is in agreement with the con-
flicting properties of coverage and conformity. Comparing plans obtained via model 1
and model 2, model 2 tends to yield plans with slightly higher coverage and conformity,
with increases in toxicity more significant when large weights are placed on the contour
points.
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Table 6
Clinical significance of the MIP generated plans.

Model 1 Model 2

Pt Prostate Activity Conformity Coverage No. Conformity Coverage No.
vol. (cc) (mCi) seeds seeds

100 Gy

1 49.1 0.592 1.20 0.973 40 1.21 0.973 40
2 53.6 0.450 1.16 0.994 51 1.21 0.994 53
3 34.2 0.334 1.18 0.945 51 1.23 0.945 52
4 31.0 0.400 1.17 0.985 42 1.20 0.978 43
5 68.7 0.590 1.21 0.985 50 1.22 0.988 51
6 68.1 0.450 1.20 0.986 64 1.22 0.982 64
7 26.7 0.400 1.25 0.970 39 1.29 0.973 40
8 40.8 0.450 1.21 0.983 44 1.21 0.985 44
9 28.9 0.500 1.28 0.988 32 1.35 0.992 34

120 Gy

10 16.6 0.468 1.29 0.939 28 1.29 0.973

160 Gy

11 66.1 0.520 1.12 0.964 85 1.15 0.967 86
12 38.3 0.544 1.23 0.951 58 1.25 0.951 58
13 39.9 0.450 1.22 0.986 70 1.27 0.990 72
14 48.2 0.450 1.17 0.989 76 1.23 0.993 71
15 24.3 0.550 1.18 0.980 42 1.23 0.973 42
16 45.3 0.592 1.15 0.975 57 1.15 0.980 57
17 50.7 0.463 1.11 0.874 72 1.10 0.873 72
18 26.4 0.500 1.29 0.970 51 1.34 0.986 52
19 25.4 0.450 1.15 0.964 48 1.20 0.977 49
20 25.6 0.400 1.16 0.977 57 1.13 0.965 56

5. Discussion

We presented a mixed integer programming approach to brachytherapy treatment plan-
ning and provided numerical and clinical results when applied to permanent prostate
implants. The computational work presented herein demonstrates that our models can
produce high-quality and clinically acceptable treatment plans for prostate cancer cases.
The MIP models provide the flexibility to enforce clinically critical dosimetric condi-
tions, and to prioritize dose level achievement for vital organs and tissues near the dis-
eased structure.

Although the mixed integer programming problem instances are difficult to solve to
optimality, with our specialized heuristic procedure and branching routines, good treat-
ment plans are returned within 15 CPU minutes. Compared to currently used computer-
aided planning methods, plans derived via the MIP approach use fewer seeds (20–30
fewer) and needles, and provide better coverage and conformity – measures commonly
used to assess the quality of treatment plans. This suggests that incorporation of this
MIP-based optimization module into a comprehensive treatment planning system for
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Figure 1. Normal tissue toxicity and tumor coverage for model 1 with varying weights on prostate bound-
aries.

Figure 2. Normal tissue toxicity and tumor coverage for model 2 with varying weights on prostate bound-
aries.

use in the operating room is feasible. This work has the potential to have a direct pos-
itive impact on treatment success, as well as in eliminating the time-consuming task
of generating treatment plans via iterative approaches. Interested readers can refer to
the publications [4,8,15,17] for additional medical and clinical insight regarding this
research.
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The preliminary matrix reduction techniques appear to help in reducing the com-
putational effort in solving the MIP instances to optimality. Studies detailing the integer
programming aspects, including detailed computational strategies and numerical com-
parisons for applying matrix reduction techniques in solving the dense MIP instances
will be reported in [9].
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